QFT I exercises - sheet 2

Free scalar quantum fields

For a free real scalar field of mass m we have the Lagrangian,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} \tag{1}
\end{equation*}
$$

We can introduce new coordinates

$$
\begin{gather*}
\phi(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}}\left(a_{\vec{p}}+a_{-\vec{p}}^{\dagger}\right) e^{\mathrm{i} \vec{p} \vec{x}} \tag{2}\\
\pi(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{\frac{E_{p}}{2}}(-i)\left(a_{\vec{p}}-a_{-\vec{p}}^{\dagger}\right) e^{\mathrm{i} \vec{p} \vec{x}} \tag{3}
\end{gather*}
$$

After quantisation the a and a^{\dagger} are operators. Moreover, $E_{\vec{p}}=\sqrt{|\vec{p}|^{2}+m^{2}}$.
a Calculate the Hamiltonian operator (Hint: guess it's form first!)
The momentum operator follows from the energy-momentum tensor as the Noether charge associated to translations.
b Calculate the momentum operator P^{i}
c Compute energy and momentum of the state $a_{\vec{q}}^{\dagger}|0\rangle$ where \vec{q} is some three vector and suggest an interpretation of this state

Now we generalize to the complex scalar field with Lagrangian,

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-m^{2} \phi^{*} \phi \tag{4}
\end{equation*}
$$

e Write the fields ϕ and ϕ^{*} and their momentum densities π and π^{*} in terms of creation and annihilation operators as above. How are the creation and annihilation operators of the complex fields related?
f Suggest a change of coordinates which changes this Lagrangian into a sum over two Lagrangians for real scalar fields.
g Repeat exercise b) and c) for the complex scalar field in these new coordinates.
h Derive the commutation relations of the complex fields $\phi, \phi^{*}, \pi, \pi^{*}$.
As discussed last week, the complex scalar field has a phase rotation symmetry for $\phi \rightarrow e^{\mathrm{i} \alpha} \phi$. By Noether's theorem this leads to the existence of a conserved Noether charge Q_{N}
i Guess what $Q_{N} \phi(x)|0\rangle$ and $Q_{N} \phi^{*}(x)|0\rangle$ will evaluate to.
j Compute the operator Q_{N} and the commutation relations [$Q_{N}, \phi(x)$] and $\left[Q_{N}, \phi^{*}(x)\right]$.
k Compute $Q_{N} \phi(x)|0\rangle$ and $Q_{N} \phi^{*}(x)|0\rangle$. Hint: compute $Q_{N}|0\rangle$ first.
1 Suggest an interpretation of $\phi(x)|0\rangle$
m Compute $\langle 0| \phi(x) \phi(y)|0\rangle,\langle 0| \phi^{*}(x) \phi^{*}(y)|0\rangle,\langle 0| \phi(x) \phi^{*}(y)|0\rangle$ and $\langle 0| \phi^{*}(x) \phi(y)|0\rangle$

More Klein-Gordon fun

For a free real scalar field of mass m we have the Lagrangian,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} \tag{5}
\end{equation*}
$$

Consider now the $4 D$ Fourier transform,

$$
\begin{equation*}
\phi(x)=\int \frac{d^{4} p}{(2 \pi)^{4}} \phi(p) e^{\mathrm{i} p_{\mu} x^{\mu}} \tag{6}
\end{equation*}
$$

a Show the solution to the Klein-Gordon equation can be written as

$$
\phi(p)=\frac{a_{\vec{p}}}{\sqrt{2 E_{p}}} \delta\left(p^{0}-E_{p}\right)+\frac{a_{\vec{p}}^{\dagger}}{\sqrt{2 E_{p}}} \delta\left(p^{0}+E_{p}\right)
$$

Now add a term to the Lagrangian,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}+J \phi \tag{7}
\end{equation*}
$$

with a new field $J(x)$. This field will be treated as a classical field.
b Derive the equation of motion and write the most general solution in terms of the retarded Greens function.
c Introduce a new field $\tilde{\phi}$ and \tilde{J} such that the Lagrangian does not contain $\tilde{\phi} \tilde{J}$-type terms. (Hint: complete the square)
$\mathrm{d} J(y)$ is switched on and off in the past $\left(y^{0}<x^{0}\right)$. Show the solution to the equation of motion $\phi(x)$ can be written as a), with redefined coefficients $a_{\vec{p}}$ and $a_{\vec{p}}^{\dagger}$
e Compute $\langle 0| H|0\rangle$ after j has been switched off.
f Interpret the answer of d). Why is J sometimes called a source?

